168 research outputs found

    galkin\texttt{galkin}: a new compilation of the Milky Way rotation curve data

    Full text link
    We present galkin\texttt{galkin}, a novel compilation of kinematic measurements tracing the rotation curve of our Galaxy, together with a tool to treat the data. The compilation is optimised to Galactocentric radii between 3 and 20 kpc and includes the kinematics of gas, stars and masers in a total of 2780 measurements carefully collected from almost four decades of literature. A simple, user-friendly tool is provided to select, treat and retrieve the data of all source references considered. This tool is especially designed to facilitate the use of kinematic data in dynamical studies of the Milky Way with various applications ranging from dark matter constraints to tests of modified gravity.Comment: Description of out-of-the-box public tool to treat data compilation first used in Nature Physics 11, 245-248 (2015). Please cite SoftwareX and Nature Physics papers together. Refer to https://github.com/galkintool/galkin for source code and additional informatio

    Lithium synthesis in microquasar accretion

    Full text link
    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 1e-2 Msun for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pre-galactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis

    Mapping dark matter in the Milky Way, a synopsis

    Full text link
    Mapping the dark matter distribution across our Galaxy represents a central challenge for the near future as a new generation of space-borne and ground-based astronomical surveys swiftly comes online. Here we present a synopsis of the present status of the field, reviewing briefly the baryonic content and the kinematics of the Milky Way and outlining the methods used to infer the dark matter component. The discussion then proceeds with some of the latest developments based on our own work. In particular, we present a new compilation of kinematic measurements tracing the rotation curve of the Galaxy and an exhaustive array of observation-based baryonic models setting the contribution of stellar bulge, stellar disc and gas to the total gravitational potential. The discrepancy between these two components is then quantified to derive the latest constraints on the dark matter distribution and on modified Newtonian dynamics. We shall end with an overview of future directions to improve our mapping of the dark matter distribution in the Milky Way.Comment: Proceedings of highlight talk at the 34th International Cosmic Ray Conference, 30 July-6 August, 2015, The Hague, The Netherlands, 16 pages, 2 figures, 1 tabl

    Testing modified Newtonian dynamics in the Milky Way

    Get PDF
    Modified Newtonian dynamics (MOND) is an empirical theory originally proposed to explain the rotation curves of spiral galaxies by modifying the gravitational acceleration, rather than by invoking dark matter. Here,we set constraints on MOND using an up-to-date compilation of kinematic tracers of the Milky Way and a comprehensive collection of morphologies of the baryonic component in the Galaxy. In particular, we find that the so-called "standard" interpolating function cannot explain at the same time the rotation curve of the Milky Way and that of external galaxies for any of the baryonic models studied, while the so-called "simple" interpolating function can for a subset of models. Upcoming astronomical observations will refine our knowledge on the morphology of baryons and will ultimately confirm or rule out the validity of MOND in the Milky Way. We also present constraints on MOND-like theories without making any assumptions on the interpolating function.Comment: 6 pages, 3 figure

    Dynamical constraints on the dark matter distribution in the Milky Way

    Full text link
    An accurate knowledge of the dark matter distribution in the Milky Way is of crucial importance for galaxy formation studies and current searches for particle dark matter. In this paper we set new dynamical constraints on the Galactic dark matter profile by comparing the observed rotation curve, updated with a comprehensive compilation of kinematic tracers, with that inferred from a wide range of observation-based morphologies of the bulge, disc and gas. The generalised Navarro-Frenk-White (NFW) and Einasto dark matter profiles are fitted to the data in order to determine the favoured ranges of local density, slope and scale radius. For a representative baryonic model, a typical local circular velocity of 230 km/s and a distance of the Sun to the Galactic centre of 8 kpc, we find a local dark matter density of 0.420+0.021-0.018 (2 sigma) +- 0.025 GeV/cm^3 (0.420+0.019-0.021 (2 sigma) +- 0.026 GeV/cm^3) for NFW (Einasto), where the second error is an estimate of the systematic due to baryonic modelling. Apart from the Galactic parameters, the main sources of uncertainty inside and outside the solar circle are baryonic modelling and rotation curve measurements, respectively. Upcoming astronomical observations are expected to reduce all these uncertainties substantially over the coming years.Comment: 10 pages, 5 figures, 2 tables, matches published versio

    Pinpointing Cosmic Ray Propagation With The AMS-02 Experiment

    Full text link
    The Alpha Magnetic Spectrometer (AMS-02), which is scheduled to be deployed onboard the International Space Station later this year, will be capable of measuring the composition and spectra of GeV-TeV cosmic rays with unprecedented precision. In this paper, we study how the projected measurements from AMS-02 of stable secondary-to-primary and unstable ratios (such as boron-to-carbon and beryllium-10-to-beryllium-9) can constrain the models used to describe the propagation of cosmic rays throughout the Milky Way. We find that within the context of fairly simple propagation models, all of the model parameters can be determined with high precision from the projected AMS-02 data. Such measurements are less constraining in more complex scenarios, however, which allow for departures from a power-law form for the diffusion coefficient, for example, or for inhomogeneity or stochasticity in the distribution and chemical abundances of cosmic ray sources.Comment: 12 pages, 7 figures, 3 tables, matches published versio

    Gamma-ray triangles: a possible signature of asymmetric dark matter in indirect searches

    Get PDF
    We introduce a new type of gamma-ray spectral feature, which we denominate gamma-ray triangle. This spectral feature arises in scenarios where dark matter self-annihilates via a chiral interaction into two Dirac fermions, which subsequently decay in flight into another fermion and a photon. The resulting photon spectrum resembles a sharp triangle and can be readily searched for in the gamma-ray sky. Using data from the Fermi-LAT and H.E.S.S. instruments, we find no evidence for such spectral feature and therefore set strong upper bounds on the corresponding annihilation cross section. A concrete realization of a scenario yielding gamma-ray triangles consists of an asymmetric dark matter model where the dark matter particle carries lepton number. We show explicitly that this class of models can lead to intense gamma-ray spectral features, potentially at the reach of upcoming gamma-ray telescopes, opening a new window to explore asymmetric dark matter through indirect searches.Comment: 11 pages, 6 figures. Published versio

    Multi-messenger constraints on the annihilating dark matter interpretation of the positron excess

    Full text link
    The rise in the energy spectrum of the positron ratio, observed by the PAMELA satellite above 10 GeV, and other cosmic ray measurements, have been interpreted as a possible signature of Dark Matter annihilation in the Galaxy. However, the large number of free parameters, and the large astrophysical uncertainties, make it difficult to do conclusive statements about the viability of this scenario. Here, we perform a multi-wavelength, multi-messenger analysis, that combines in a consistent way the constraints arising from different astrophysical observations. We show that if standard assumptions are made for the distribution of Dark Matter (we build models on the recent Via Lactea II and Aquarius simulations) and the propagation of cosmic rays, current DM models cannot explain the observed positron flux without exceeding the observed fluxes of antiprotons or gamma-ray and radio photons. To visualize the multi-messenger constraints, we introduce "star plots", a graphical method that allows to show in the same plot theoretical predictions and observational constraints for different messengers and wavelengths.Comment: 15 pages, 8 figures, matches published versio

    Dark Matter distribution in the Milky Way: microlensing and dynamical constraints

    Full text link
    We show that current microlensing and dynamical observations of the Galaxy permit to set interesting constraints on the Dark Matter local density and profile slope towards the galactic centre. Assuming state-of-the-art models for the distribution of baryons in the Galaxy, we find that the most commonly discussed Dark Matter profiles (viz. Navarro-Frenk-White and Einasto) are consistent with microlensing and dynamical observations, while extreme adiabatically compressed profiles are robustly ruled out. When a baryonic model that also includes a description of the gas is adopted, our analysis provides a determination of the local Dark Matter density, \rho_0=0.20-0.56 GeV/cm^3 at 1\sigma, that is found to be compatible with estimates in the literature based on different techniques.Comment: 12 pages, 5 figures, matches published versio
    corecore